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Eulerian–Lagrangian simulations of multiphase flow are known to suffer from two errors
that can introduce small-scale fluctuations in the number-density of the dispersed phase.
These errors can be reduced by increasing the number of particles in the simulation. Here,
we present results to demonstrate that a third error exists that can also generate small-
scale number-density fluctuations. In contrast to the two known errors, this error cannot
be lowered by increasing the number of particles. Analysis shows that this error is caused
by spatial variation at the subgrid scale in the interpolation error of the fluid velocity to the
particle location. If the particle velocity divergence is zero, the particle concentration error
remains at the subgrid scale. However, if particles preferentially accumulate either due to
their inertia or due to divergence of the underlying fluid-velocity field, this error manifests
as number-density fluctuations on the grid scale. The only mechanism of reducing these
errors is through higher-order accurate interpolation. By studying two model problems,
estimates for the errors are derived. These estimates are shown to be quite accurate for
simulations of shock and expansion waves interacting with particles.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In Eulerian–Lagrangian simulations of multiphase flows, the carrier (fluid) phase is evolved in the Eulerian framework
and the dispersed (fluid or solid) phase is treated by the Lagrangian framework. In the Eulerian approach, conservation equa-
tions are solved for the mass, momentum, and energy per unit volume on a fixed grid. In the Lagrangian approach, equations
are solved for the position, mass, momentum, and energy of material points that move through the fixed Eulerian grid. (For
brevity, we will consider the dispersed phase to be solid and hence refer to the material points as particles. The issues dis-
cussed in this article apply equally to bubbles and droplets, however.)

In the Lagrangian equations, quantities such as the undisturbed fluid velocity, fluid acceleration, and fluid temperature
are needed at the particle location. Because the particles do not, in general, coincide with the locations at which the fluid
solution is stored, some form of interpolation is required. (In this article, we assume that the fluid solution is obtained at
grid points through a finite-difference method. Therefore, the fluid properties must be interpolated from grid points to
the particle locations.) The interpolation is sometimes referred to as ‘‘forward” or Eulerian-to-Lagrangian coupling. At suffi-
ciently high mass loadings, the particles begin to influence the fluid. This back effect represents Lagrangian-to-Eulerian or
‘‘backward” coupling.
. All rights reserved.
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To discuss the coupling in more detail, consider the momentum exchange between the phases. According to Newton’s
third law, the hydrodynamic force exerted on the individual particles is applied back to the carrier phase. In backward cou-
pling, the forces from particles must be transferred to the grid points and applied as source/sink terms in the momentum
equations of the carrier phase. A smooth distribution of the particle number-density, i.e., the number of particles per unit
volume, on the grid is essential for an accurate accounting of the back effect of the dispersed phase on the carrier phase.
Large grid-scale fluctuation in the particle number-density will introduce spurious small-scale oscillations in the carrier
phase through backward coupling. These oscillations, in turn, will then be fed back to the particle motion and distribution
through forward coupling. This feedback mechanism can lead to accumulation of errors.

Here, we focus on a class of physical problems where the particles are small and numerous. This will result in a large
number of particles within each grid cell (in one dimension: the region between two adjacent grid points), allowing a con-
ceptually smooth representation of the particle number-density and the backward coupling. Because the cost of Eulerian–
Lagrangian simulations is proportional to the number of particles, it is common to limit the average number of particles
per cell and define so-called ‘‘computational particles” that represent a large number (or cloud) of real particles. In such sim-
ulations, several sources of numerical errors can be identified:

(1) The Eulerian Discretization Error (EDE) that arises from the spatial and temporal discretization of the equations gov-
erning the carrier phase.

(2) The Interpolation Error (IE) that arises from the interpolation of the carrier-phase solution from the Eulerian grid to
the particle locations.

(3) The Lagrangian Integration Error (LIE) that arises from the temporal discretization of the Lagrangian equations for the
particles.

(4) The Back-Coupling Error (BCE) that arises partly from the discrete algorithm that apportions the momentum and
energy coupling of the individual particles back to the neighboring grid points (or cells) and partly from the fact that
only a limited number of computational particles are used to represent the true system where spatial distribution is
random.

These errors are controlled by the spatial discretization, the temporal discretization, and the Lagrangian discretization
(number of computational particles per cell). The errors from the spatial and temporal discretizations are easily controlled,
at least in principle, by choosing appropriate methods and reducing the grid spacing Dx and time step Dt. For this reason, we
ignore the EDE and LIE in the following. (All numerical results presented below have been verified to have negligible EDE and
LIE.) The other two errors (IE and BCE) arise from the numerical approximation of the forward and backward coupling. Sev-
eral interpolation schemes (second-, fourth-, and sixth-order Lagrange interpolation; spline interpolation; Hermite interpo-
lation; etc.) have been used in the past. The IE arising from various interpolation schemes has been considered by [1] and
[20] for turbulent flows. Although higher-order schemes have been shown to result in significantly reduced IE, lower-order
methods such as trilinear interpolation are often used, especially in the context of finite-volume and finite-difference ap-
proaches (see, e.g., [16,15,21]). Similarly, several techniques have been advanced to back-couple the Lagrangian particles
to the carrier phase, such as the particle-in-cell approach (e.g., [5,4,8]) and the projection method (e.g., [17,19,2]). The accu-
racy of backward-coupling algorithms has recently been examined by [7].

Eulerian–Lagrangian simulations of multiphase flows often exhibit small-scale fluctuations in the number-density. Here,
the term ‘‘small scales” means scales on the order of the grid spacing. Traditionally, such fluctuations have been ascribed to
two errors. If particles are randomly distributed with uniform probability over a given domain, the inherent stochastic fluc-
tuation arising from the random distribution will contribute to grid-cell to grid-cell variation in the particle number-density.
This stochastic error scales as the inverse square root of the mean number of particles per grid cell. A further error is due to
the finite number of computational particles, which is typically far smaller than the actual number of particles. This deter-
ministic error decreases as the inverse of the mean number of particles per grid cell (see [13,22,7]). Thus, while the nature of
these two errors is fundamentally different, both can be controlled by increasing the number of computational particles.

However, there are cases (see [10]) where small-scale number-density fluctuations cannot be reduced by increasing the
number of computational particles or by maintaining the number of computational particles in each cell constant (see
[13,18,9,12]). Furthermore, these small-scale fluctuations cannot be explained on the basis of stochastic errors arising from
a random particle distribution. It is this additional of error in particle number-density that is the focus of this article.

A simple explanation for the added source of number-density fluctuation that cannot be reduced by increasing the num-
ber of particles is as follows. Consider the carrier-phase velocity to consist of a simple propagating disturbance of fixed shape
and size. Let the exact fluid velocity be known at the grid points at all time instances (i.e., EDE is taken to be zero at the dis-
crete grid points). Even then, if a lower order interpolation scheme is used to obtain fluid velocity between grid points for
computing particle motion, the resulting interpolated fluid disturbance will change shape as it propagates through the grid.
This interpolation error in particle motion contributes to spurious variations of the particle position at the subgrid scale.
These variations may accumulate over time and become significant. Thus, particle number-density error can arise from inter-
polation error (IE) even in the absence of any error in the fluid solution (EDE). However, in any typical numerical implemen-
tation, the fluid velocity will include Eulerian discretization error and if the spatial discretization of the flow solver and the
interpolation scheme are of the same order then EDE and IE will be comparable. Both EDE and IE will lead to errors in particle
number-density.
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As will be shown below the nature of interpolation error’s impact on particle motion will be such that IE will result in
spurious small-scale fluctuation in particle number-density. This error will be subgrid in origin and appear as fluctuating
clustering of particles within the grid cells. There are situations where particles tend to preferentially accumulate and create
regions of enhanced concentration and regions devoid of particles, either due to their inertial effect or due to non-zero diver-
gence of the underlying fluid velocity. Such effective divergence in particle motion spreads the subgrid error due to IE and
give rise to grid-cell to grid-cell particle number-density fluctuation.

The goals of this article are (1) to determine the precise source of the error, (2) to demonstrate how the error can be re-
duced, and (3) to characterize the error magnitudes so that guidelines can be established that allow practitioners to keep the
error below specified thresholds. The overall approach adopted to reach these goals is to systematically eliminate other
sources of error, consider four simple test problems in one dimension. The first two are model problems where the propa-
gating fluid disturbance consists of (1) a single sinusoidal wave and (2) a hyperbolic-tangent disturbance. These two models
problems provide the ideal test bed to illustrate the interpolation-induced error in particle number-density. While the for-
mer has no net fluid-velocity divergence across the disturbance, the later does. This allows examination of how subgrid error
translates to grid-cell to grid-cell error. The later two test cases consider one-dimensional compressible flows of practical
interest, namely (3) an expansion fan and (4) a shock wave. The results obtained from the model problems will be used
to interpret the results for these later test cases.

The remainder of this article is structured as follows. The general mathematical model of multiphase flow in Eulerian–
Lagrangian framework is described in Section 2. A simplified model is introduced in Section 3. The numerical approach is
outlined in Section 4. Results are presented in Section 5. Conclusions are offered in Section 6.
2. Mathematical formulation

The equations governing the carrier phase are conveniently expressed in the Eulerian frame of reference. We consider
only one-dimensional problems in this article because the fundamental nature of the error investigated here is not depen-
dent on the number of spatial dimensions. The mass, momentum, and energy equations of the carrier phase can then be writ-
ten as
@ðqg�Þ
@t�

þ @ðq
g�ug�Þ
@x�

¼ 0; ð1Þ

@ðqg�ug�Þ
@t�

þ @½q
g�ðug�Þ2�
@x�

¼ � @pg�

@x�
� f p�; ð2Þ

@ðqg�Eg�Þ
@t�

þ @ðq
g�Hg�ug�Þ
@x�

¼ �up�f p� � qp�; ð3Þ
where q;u; p; E, and H represent the density, velocity, pressure, total energy, and total enthalpy. The superscripts g and p de-
note properties associated with the gas phase and particle phase, respectively. The superscript � indicates dimensional quan-
tities. The total enthalpy of the gas Hg� is given by Hg� ¼ Eg� þ pg�=qg�. The ideal-gas law is assumed to apply, i.e.,
pg� ¼ ðc� 1Þqg� Eg� � 1
2
ðug�Þ2

� �
; ð4Þ
where c is the ratio of specific heats of the gas. We use c ¼ 1:4 throughout.
The Lagrangian evolution equations for the particle position xp�, velocity up�, and temperature Tp� are
dxp�

dt�
¼ up�; ð5Þ

dup�

dt�
¼ ug�ðxp�; t�Þ � up�

sp� ; ð6Þ

dTp�

dt�
¼ Tg�ðxp�; t�Þ � Tp�

sp�
h

; ð7Þ
where ug�ðxp�; t�Þ and Tgðxp�; t�Þ are the gas velocity and temperature at the particle location, respectively, and the particle
mechanical and thermal time scales sp� and sp�

h are given by
sp� ¼
qp� dp�� �2

18lg� ; sp�
h ¼

Cp�qp� dp�� �2

12jg� ; ð8Þ
where qp� is the particle density, dp� is the particle diameter, and Cp� is the particle specific heat, all of which are assumed to
be constants. Because finite Reynolds number effects are not important for the purpose of this study, no such corrections are
incorporated. The variation of the dynamic viscosity lg� with temperature is given by Sutherland’s law. The conductivity jg�

and viscosity of the gas are related by the Prandtl number Pr ¼ lg�Cg�
p =jg�, where Cg�

p is the specific heat at constant pressure
of the gas. In the limit sp� ! 0, the particle behaves as a tracer and follows the local gas, i.e., up� ! ug�ðxp�; t�Þ. When sp� – 0,
particle inertia becomes important and the particle velocity differs from that of local gas phase velocity.
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When the particle mass loading is not negligible, the particles influence the momentum and energy of the gas through f p�

and qp� in Eqs. (2) and (3) (backward coupling). For the ith particle, we have
Fig. 1.
conside
f p�
i ¼

p
6

qp�ðdp�Þ3
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ug�ðxp�
i ; t

�Þ � up�
i

sp� ; qp�
i ¼

p
6

Cp�qp�ðdp�Þ3
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Tg� xp�
i ; t

�� �
� Tp�

i

sp�
h

; ð9Þ
where Vcell is equal to the grid spacing for the one-dimensional computations considered here. The terms f p� and qp� in Eqs.
(2) and (3) are calculated by summing f p�

i and qp�
i of all the particles in the vicinity of the grid point.
3. A simple model scenario

Though results based on the mathematical model described in Section 2 will be shown in Section 5, we consider an even
simpler model first to isolate the precise cause for the small-scale number-density fluctuations. In this simpler model, we
assume that the fluid velocity is a known function and that heat-transfer effects are negligible. Then only the solution of
the particle position and momentum equations is required.

For reasons that will become clear below, a gas phase velocity disturbance that is spatially compact is particularly useful
in the present study. Then the gas phase velocity can be written in dimensional form as
ug�ðx�; t�Þ ¼
0 if x� þ u�s t� 6 �N�=2
wðx� þ u�s t�Þ if � N�=2 < x� þ u�s t� 6 N�=2
u�2 if x� þ u�s t� > N�=2;

8><>: ð10Þ
where N� is the region of support. The shape of the disturbance is dictated by the choice of the function w and is independent
of time. As defined above, the disturbance travels leftward at a constant velocity of u�s > 0. The function w is defined to guar-
antee at least C0-continuity at x� þ u�s t� ¼ �N�=2. We assume that the particles are initially stationary, uniformly distributed
within a given sub-domain, and to the left of the disturbance. The model problem is shown schematically in Fig. 1. Our pri-
mary interest is to determine how the particles are redistributed as the disturbance propagates through the particles.

It is instructive to first consider the theoretical behavior of the particles in reaction to the disturbance. The particles re-
main stationary until the arrival of the disturbance. We place a restriction on the gas phase velocity that wþ u�s > 0 for all x�.
This ensures that there are no fixed points in Eqs. (5) and (6) where particles can accumulate. Thus, as the disturbance moves
to the left, the particles are guaranteed to emerge from the disturbance on the right. For a tracer particle, i.e., for sp ¼ 0, the
velocity instantaneously becomes equal to u�2 as soon as the disturbance moves past it. For an inertial particle, i.e., for sp > 0,
the approach to the velocity is asymptotic. In the region of the disturbance where the particle velocity is varying, the spacing
between particles can be non-uniform. But to the far right of the disturbance, where the particle velocity has reached the
asymptotic value of u�2, the particles are again uniformly distributed. From conservation of particles, it can be shown readily
that the ratio of the uniform spacing between two adjacent particles after the passage of the disturbance to that before the
disturbance is 1þ u�2=u�s .

In what follows, it will be shown that the above theoretical results are not recovered when the problem is solved numer-
ically. Although all the particles numerically reach the correct asymptotic velocity of u�2, they will not be uniformly distrib-
uted. It is this non-uniform distribution of particles that can give rise to the grid scale fluctuations described in the
introduction. The root cause of the error lies in the precise way in which the fluid velocity is interpolated to the particle loca-
tion. In the numerical solution, the fluid velocity that is collocated at the grid points is interpolated to obtain a numerical
approximation to w. As the disturbance moves through the fixed Eulerian grid, the interpolated fluid velocity varies over time
(i.e., the numerical approximation to w varies). This variation is time-periodic, since the fluid velocity at the grid points and
its interpolation are identical after the disturbance has moved over an entire grid cell.
Particles

Particles

*

x

s

x
t =0*

*

*

t*

u u*
2

Schematic of model problem in which a wave moves through a packet of particles. In model problem 1 (see Section 5.1), a sinusoidal wave is
red. In model problem 2 (see Section 5.2), a hyperbolic-tangent wave is used.
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In essence, although the exact disturbance is collocated at the grid points as it propagates to the left, its numerical
approximation obtained from interpolation changes as the disturbance moves within a grid cell, and this variation cyclically
repeats over adjacent grid cells. Consequently, particles that are initially located at different positions within a grid cell ‘‘see”
slightly different histories of the carrier-phase velocity as the disturbance propagates through the grid cell. This results in a
non-uniform particle distribution as they emerge out of the disturbance. Again, the non-uniformity is within a packet of par-
ticles that was between grid points to the left of the disturbance before its arrival. By contrast, in the exact solution, there is
no grid dependence and each particle sees the same history of gas phase velocity and thus a uniform spacing is preserved
even after particles emerge from the disturbance.

A key parameter that controls the level of non-uniformity in the numerical solution is the grid size Dx�, or more precisely
the number of grid points used to resolve the disturbance ðN ¼ N�=Dx�Þ. Here we use the grid size Dx� and the velocity of
propagation of the disturbance u�s as the length and velocity scales. Then the gas phase velocity and the equations of motion
for the particle can be written in dimensionless form as
ug ¼ ugðx; tÞ; ð11Þ
dxp

dt
¼ up; ð12Þ

dup

dt
¼ ugðxp; tÞ � up

sp
; ð13Þ
where the variables without superscripts � are dimensionless.

4. Approach

4.1. Numerical methods for governing equations

For the model problem, the gas solution is assumed to be known and is not influenced by the particles, i.e., we only con-
sider one-way coupling. For the real multiphase-flow problems, both the gas and the particle phases need to be solved. In
this work, Eqs. (1)–(3) are solved by a fifth-order accurate hybrid compact-WENO scheme with RK4 time integration de-
scribed by [3]. Eqs. (5)–(7) are integrated in time with RK4 also. The grid spacing and time step are chosen small enough
to ensure that the associated errors are negligible. The implementation of two-way coupling is described by [10,11].

4.2. Interpolation methods

In the numerical integration of Eqs. (6) and (7) or Eq. (13), fluid quantities at the particle position, e.g., ug�ðxp�; t�Þ or
ugðxp; tÞ, are needed. They must be obtained through interpolation from grid-point values of the fluid velocity. In the present
study, we employ four interpolation methods:

(1) Piecewise-constant interpolation: The interpolated fluid velocity is approximated as a constant between grid points and
is therefore discontinuous at the grid points. The fluid velocity at the particle location is obtained by averaging the
values at the two grid points straddling the cell in which the particle is located. This interpolation scheme is not of
practical interest due to its low order of accuracy.

(2) Piecewise-linear interpolation: This interpolation method can be viewed as first-order spline interpolation. The fluid-
velocity distribution inside a cell is approximated as linear. The interpolated fluid velocity is only C0-continuous across
the grid points. In two and three dimensions, this scheme leads to the widely used bilinear and trilinear interpolation
schemes.

(3) Natural cubic-spline interpolation: In cubic-spline interpolation, the fluid velocity is constructed such that the interpo-
lated fluid velocity is smooth and continuous in the first and second derivatives at the grid points. Natural cubic
splines, which assume that the second derivatives of the interpolant at the domain boundaries are zero, are the most
commonly used cubic spline.

(4) Hermite interpolation: In this method, the fluid velocity inside a cell is interpolated by Hermite polynomials. Therefore,
not only the function values but also the first derivative are needed at the grid points. The interpolated fluid velocity is
C1-continuous. In the model problems, the first derivative at the grid points is available analytically. In a real compu-
tation, the first derivative of the fluid velocity at the grid points must be computed numerically. In multiple dimen-
sions, the complete implementation of Hermite interpolation can be tedious, and instead, a simpler shape-function
method can be used see [1].

4.3. Error definitions

To evaluate the influence of the interpolation error and the resulting non-uniformity in the particle distribution, we only
need to study a single packet of particles, defined as a group of particles located within a grid cell prior to the arrival of the
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disturbance. As discussed above, and to be illustrated in more detail below, the behavior of each packet of particles is
identical.

We define the right and left bounds of the packet as xp
RðtÞ and xp

LðtÞ, respectively. The distribution of particles in the packet
at any given time is a function of the initial distribution. Thus the distribution of particles within the packet can be defined in
terms of their relative-position as follows:
gðg0; tÞ ¼
xpðtÞ � xp

LðtÞ
xp

RðtÞ � xp
LðtÞ

; ð14Þ
such that 0 6 g 6 1 at all times. Similarly, the initial distribution of particles within the packet is given by
g0 ¼
xpð0Þ � xp

Lð0Þ
xp

Rð0Þ � xp
Lð0Þ

: ð15Þ
Therefore, g ¼ gðg0; tÞ gives the particle distribution inside the packet and serves as a mapping from the initial to the current
particle distribution.

The derivative dg=dg0 measures the particle spacing, i.e., the distance between two neighboring particles within the pack-
et. The inverse of the particle spacing, i.e., dg0=dg, provides a measure of the local particle number-density. The particle num-
ber-density within a grid cell of unit width centered around g can then be obtained as
npðgÞ ¼ 1
h

Z gþh=2

g�h=2

dg0

dg

����
n

dn; ð16Þ
where h ¼ 1=ðxp
RðtÞ � xp

LðtÞÞ is the unit grid spacing normalized by the current packet size xp
RðtÞ � xp

LðtÞ.
We define several errors to measure the small-scale fluctuations arising from the interpolation. In all definitions, we com-

pare the numerical results (subscript ‘‘num”) with the corresponding exact solution (subscript ‘‘ex”). For the exact solution,
the asymptotic particle distribution remains uniform as discussed above, and we have the results gexðg0; tÞ ¼ g0 and
ðdg=dg0Þex ¼ 1 as t !1. However, the width of the packet of particles changes and the ratio of final to initial number-den-
sity is given by 1=ð1þ u2Þ. The error definitions are:

� Mean error: Measures the error in the mean location of the packet,
Emean ¼
1
L

xp
L;ex þ xp

R;ex

2
�

xp
L;num þ xp

R;num

2

 !
: ð17Þ
� Spread error: Measures the error in the width of the packet,
Espr ¼
xp

R;ex � xp
L;ex

� �
� xp

R;num � xp
L;num

� �
xp

R;ex � xp
L;ex

� � : ð18Þ
� Relative-position error: Evaluates the error of the relative particle position within the packet compared to the exact
solution,
EposðgÞ ¼ jg� g0j: ð19Þ
� Spacing error: Evaluates the error in adjacent particle spacing,
EspacðgÞ ¼
dg
dg0
� 1

���� ����: ð20Þ
� Number-density error: Evaluates the error in particle number density within each grid cell arising from the numerical
solution,
EndðgÞ ¼ jnpðgÞ � 1j: ð21Þ
Note that the relative-position, spacing, and number-density errors are defined as a function of the current relative par-
ticle position. To measure the error for the entire packet of particles, the L2- and L1-norms are used,
L2ðEÞ ¼
Z 1

0
ðEðgÞÞ2dg; ð22Þ

L1ðEÞ ¼max
g
jEðgÞj; ð23Þ
where E stands for Epos; Espac , or End. In the above definitions, the particle distribution in a packet is assumed to be continuous.
Therefore, the error definitions are independent of the number of particles within the packet, and hence the Lagrangian dis-
cretization does not play a role. When calculating the above error norms numerically, finite numbers of particles are used.
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The numbers of computational particles used in all the calculations reported below have been chosen large enough to resolve
the continuous error profile inside the packet. As a result, any errors due to finite numbers of particles are negligibly small
compared to the interpolation error.

5. Results

In this section, results for four test problems are presented. The first two problems are model problems of the kind de-
scribed in Section 3 with sinusoidal and hyperbolic-tangent profiles, respectively. The primary difference between the
two profiles is that the latter has non-zero net fluid-velocity divergence and, therefore, represents a simple model for com-
pression and expansion waves. The second two problems are based on the full Euler equations for the gas phase listed in
Section 2 and consider proper expansion and shock waves.

5.1. Test problem 1: Sinusoidal profile

The fluid velocity is taken to be a single sinusoidal wave that moves to the left at unit speed u�s into a particle packet, as
shown schematically in Fig. 1. The non-dimensional fluid velocity is
ugðx; tÞ ¼ A sin 2pðxþtÞ
N

h i
if � t � N=2 6 x 6 �t þ N=2;

0 else;

(
ð24Þ
where N denotes the number of grid points across the unit wavelength of the sinusoidal wave and A ¼ A�=us is the dimen-
sionless amplitude. Note that A must be smaller than unity to avoid particle settling at fixed points. N provides a measure of
how well the carrier-phase velocity is resolved by the computational grid. The fluid velocity defined by Eq. (24) is only C0-
continuous because of slope discontinuities at the head and tail of the wave. To reduce interpolation errors near these dis-
continuities, it is assumed that the head and tail positions are known to subgrid resolution. Therefore, the fluid velocity is
only interpolated over the domain �t � N=2 6 x 6 �t þ N=2 and taken to be zero elsewhere. An important characteristic
of this model problem is that the particle velocity returns to zero after the passage of the disturbance, i.e., u2 ¼ u�2=u�s ¼ 0.
Therefore, the net divergence of fluid velocity is zero, and the non-dimensional packet width returns to its starting value
of unity. The results presented below can be interpreted as a von-Neumann-type error analysis of particle redistribution
within the packet and used to evaluate the accuracy of interpolation schemes.

In this model problem, the key parameters are N; sp, and A. We only consider tracer particles, i.e., sp ¼ 0. We first dem-
onstrate the effect of interpolation error with a case of very poor spatial resolution, namely N ¼ 4 and A ¼ 0:5.

5.1.1. Particle redistribution
The fundamental source of non-uniform particle redistribution within a packet is due to the manner in which the inter-

polation scheme approximates the sinusoidal fluid-velocity disturbance as the latter propagates through the fixed Eulerian
grid. Fig. 2 shows the exact velocity profile and its approximation by the four interpolation schemes. In non-dimensional
terms, the wave propagates to the left by one grid spacing in unit time. For ease of interpretation, each figure is centered
about the wave and the grid locations are marked by black filled circles. Several observations can be made. First, as expected,
the interpolation error decreases as the order of interpolation increases, with the largest error observed for piecewise con-
stant interpolation. The error is particularly large in Fig. 2 since only four points are used to resolve the wave. More signif-
icant than the error itself is how the error changes in time. As the sinusoidal disturbance moves through the grid, the
collocated values at the grid points vary in time. The numerical representation of the disturbance obtained from the inter-
polation changes correspondingly. This change can be observed readily in the different shapes of the lower-order interpo-
lants. Although not as readily observable, the approximations changes with time even for the higher-order spline and
Hermite interpolations. This variation in the approximation to the fluid velocity repeats after the wave has moved by one
grid spacing.

The adverse impact of the periodic variation in the interpolated fluid velocity on particle motion and redistribution can
now be addressed. When the leading edge of the wave reaches a given particle, it starts to move due to the non-zero relative
velocity. When a given particle exits the wave, it decelerates back to zero velocity. The tracer particles considered here stop
moving once they reach the tail of the sinusoidal wave. Thus, each particle ‘‘sees” a history of fluid velocity that dictates its
motion and final resting position. Due to variation in the interpolated sinusoidal wave, as illustrated in Fig. 2, the history of
fluid velocity ‘‘seen” by a given particle will depend on its initial position relative to the grid. As a result, an initially uniform
distribution of particles between two grid points will not remain uniformly distributed.

In interpreting the results, it is important to distinguish between two components of the interpolation error. The first is
the mean interpolation error that affects all particles irrespective of their initial location within the packet. The effect of this
error is that the final numerically predicted position of a particle within the packet is different from its exact position. Be-
cause this error is the same for all particles within a packet, it does not affect the uniformity of particle distribution. The sec-
ond error, which is that of primary concern here, is that component of the interpolation error that changes as the wave
passes through the fixed grid. Since the mean error has been taken into consideration, this error can be thought of as the
fluctuating interpolation error. The fluctuating interpolation error is the sole cause of the non-uniform particle distribution.



Fig. 2. Exact and interpolated fluid-velocity profiles as a function of time for N ¼ 4 and A ¼ 0:5. The filled circles denote locations with collocated values.
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Fig. 3(a) shows the final particle position and its error compared to the exact solution as a function of the initial particle
position. From this figure, both the mean and the relative-position error of the particles can be discerned. According to the
exact solution, every particle shifts to the left by 0.6188 because of the passage of the sinusoidal wave. By comparison, the
average left-shifts of the particles in the numerical solutions are 0.1910 (69.14%), 0.3690 (40.36%), 0.5983 (3.31%) and 0.6070
(1.90%), respectively, for the piecewise constant, piecewise linear, spline, and Hermite interpolations (the mean-position per-
centage errors are given in parentheses). The variation in the position error as a function of the initial particle location pre-
sented in Fig. 3(b) is responsible for the non-uniform distribution of particles. Note that the error repeats for every packet of
particles initially located between grid points. Therefore, we will focus on the behavior of a single packet for the rest of the
article. The results presented below can be extended to distributions stretching over multiple grid spacings by applying
periodicity.

Fig. 4(a) gives the relative-position g of a particle inside the packet as a function of its initial relative-position g0 and the
various interpolation methods. The exact solution is simply g ¼ g0. The error in the relative particle position translates into
an error in spacing between adjacent particles dg=dg0 and hence into an error in local particle number-density dg0=dg. The
local particle number-density is presented in Fig. 4(b) for the various interpolation schemes. As can be expected, the errors
associated with piecewise-constant interpolation are large. For instance, in Fig. 4(a), it can be seen that the relative-position
remains nearly constant at g � 0:92 for 0:5 6 g0 6 0:95. In other words, particles that were originally distributed over nearly
half the packet are concentrated in a narrow region around g � 0:92 after the passage of the wave. The corresponding sharp



Fig. 3. Profiles of particle position and deviation from the exact solution at t ¼ 20 as a function of initial position for N ¼ 4; sp ¼ 0, and A ¼ 0:5.

Fig. 4. Profiles of particle relative-position and local number-density inside the particle packet with initial size unity after the passage of the sinusoidal
wave for N ¼ 4; sp ¼ 0, and A ¼ 0:5.
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increase in local number-density can be observed in Fig. 4(b). The relative-position error for the piecewise linear interpola-
tion is not nearly as large. Nevertheless, it can be seen in Fig. 4(b) that the local number-density varies from about 0.7 to 1.5.
The corresponding errors for the spline and Hermite interpolation are small. Fig. 5 shows the relative-position and spacing
errors of particles inside the packet for the different interpolation schemes. Note that the scalings of the ordinates are dif-
ferent. It is observed that the error of the piecewise-linear scheme is about an order of magnitude lower than the piecewise-
constant interpolation and the corresponding errors of the natural cubic spline and Hermite interpolation methods are three
orders of magnitude lower.

5.1.2. Global error norms
The global errors integrated across the entire packet as defined by Eqs. (22) and (23) are presented in Fig. 6. We observe

that the rate of decay of the L2-norm of the relative-position and spacing errors is consistent in general with the order of
accuracy of the interpolation. The only exception is the result for piecewise-constant interpolation, for which the rate of de-
cay seems smaller than Oð1Þ. The lower error and the faster decay makes higher-order interpolation schemes attractive. For a



desired level of error, higher-order schemes typically require much lower grid resolution. For example, if it is desired that
L1ðEspacÞ 6 10�4, Fig. 6(b) indicates that more than 100 points per wavelength are needed for piecewise-linear interpolation,
but about 10 points are sufficient for cubic spline or Hermite interpolation. The behavior of the mean error presented in
Fig. 6(c) is similar to that of the spacing error.

The spread error, shown in Fig. 6(d), is generally much smaller than the other errors for all interpolation schemes, sug-
gesting that the non-dimensional packet width remains close to unity despite the interpolation error. This result has impor-
tant ramifications. Because the packet size does not change appreciably, the fluctuation of the particle position and the
spacing error within the packet remain contained within a grid cell. The particle number-density or concentration of parti-
cles measured within each grid cell show no variation and thus the errors are truly subgrid. In problems where the non-
dimensional width of the packet either increases or decreases in response to a disturbance with u2 – 0, the sub-packet fluc-
tuation will manifest itself as concentration fluctuation on the scale of the grid spacing. The second model problem is de-
signed to illustrate this effect.

5.2. Test problem 2: Hyperbolic-tangent profile

In this section, we explore the interpolation error with a model problem for which u2 – 0. As a result, the fluid velocity
has a non-zero net divergence. As a result particle spacing after the passage of the disturbance is different from its initial



Fig. 6. Evolutions of the relative-position, spacing, mean, and spread errors ðEpos; Espac ; Emean; EspÞ as functions of N for sp ¼ 0 and A ¼ 0:5.
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value. The objective is to show that because of this non-zero particle velocity divergence the sub-packet fluctuation of rel-
ative-position error will result in substantial grid-to-grid fluctuation in the number-density. Non-zero divergence of the fluid
velocity is common in compressible flows. For example, expansion and compression waves have positive and negative diver-
gence, respectively. Therefore, when an expansion fan or a shock wave pass through a region of uniformly distributed par-
ticles, significant concentration fluctuation can be expected based on the results of the first model problem.

Here, we take the fluid-velocity profile to be a hyperbolic-tangent function. With the same length and velocity scales as in
the previous problem, the dimensionless fluid velocity can be written as
ugðx; tÞ ¼ u2

2
1þ tanh

2ðxþ tÞ
N

� �
; ð25Þ
where u2 denotes the velocity jump and N represents the number of grid points across the thickness of the profile. Note that
the fluid velocity has a smooth but sharp transition around xþ t ¼ 0 and that ugðx! �1Þ ¼ 0 and ugðx! þ1Þ ¼ u2, i.e., the
fluid velocity on both sides is constant far away from the jump. When u2 > 0, Eq. (25) can be used to model an expansion fan
with constant (or ‘‘frozen”) thickness. Conversely, when u2 < 0, Eq. (25) models a shock wave. Of course, it is physically
inconsistent to have an expansion fan of constant thickness, since the width of a real expansion fan increases in time. Nev-
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ertheless, this model problem is useful in providing insight into how an expansion fan can contribute to concentration fluc-
tuations. The constant thickness of the expansion fan simplifies the interpretation of the results. A shock wave of constant
thickness propagating through a distribution of particles is realizable, however, because of the opposing mechanisms of
smoothing through diffusion and steepening through non-linearity.
5.2.1. Particle redistribution
When the wave reaches a particle, the latter starts to move to the right or left depending on the sign of u2. After suffi-

ciently long time, the hyperbolic-tangent wave has passed completely and the particle reaches the terminal velocity of
u2. After the particle packet reaches the steady state, it can be shown that the size of particle packet changes to 1þ u2. There-
fore, the packet expands or contracts depending on whether u2 is positive or negative. However, when the interpolated fluid
velocity is used, the particles are redistributed in a non-uniform manner as for the sinusoidal-wave problem. The key param-
eters for this problem are N; sp, and u2. Seven cases are presented for the values of sp and u2 shown in Table 1.

Fig. 7 shows the relative-position g and local number-density dg0=dg variation inside a packet of particles for cases 2-1
and 2-2. Here N ¼ 4, i.e., the thickness of the hyperbolic-tangent profile is resolved with only four grid points. Similar to the
previous problem, for both expansion and compression, the interpolation error redistributes the particles and generates er-
rors in the relative particle position and hence in the number-density. Fig. 8 presents the relative particle-position and spac-
ing errors for cases 2-1 and 2-2. Again the piecewise-constant interpolation yields the largest error, the error of the
piecewise-linear interpolation is an order of magnitude lower, and the errors of the natural cubic spline and Hermite inter-
polations are two orders of magnitude lower still.

In case 2-1, 1þ u2 ¼ 2, therefore, the particles that were initially located in one grid cell will be distributed over two cells
after the passage of the wave. Then the sub-packet variation of the local number-density generates grid-to-grid variation in
particle number-density with a wavelength of two grid cells. A schematic of this situation is shown in Fig. 9(a) to demon-
strate how the grid-to-grid number-density fluctuation is generated. In case 2-2, 1þ u2 ¼ 0:5, hence the particles that were
initially in one cell will be distributed over half a grid cell. So despite the sub-packet fluctuation due to the interpolation
error, there will be no grid-to-grid number-density fluctuation, because the fluctuations will be contained at the subgrid le-
vel after the compression of the particles (see Fig. 9(b)). On the other hand, in case 2-3, where 1þ u2 ¼ 0:6, the packet of
particles that were initially distributed over one grid cell get compressed to 3/5 of a cell, resulting in a grid-to-grid fluctu-
ation in particle number-density that is periodic over three grid cells as shown in Fig. 9(c). Therefore, we can state the fol-
lowing rule: If 1þ u2 is a rational number p=q, the sub-packet variation in particle distribution after the passage of the fluid-
velocity disturbance will result in a grid-to-grid number-density variation that is periodic over p grid cells. If 1þ u2 is irra-
tional, the grid-to-grid number-density variation will have no periodic structure.
5.2.2. Global error norm
Fig. 10 shows the relative-position, spacing, and mean errors for the different interpolation schemes for cases 2-1 and 2-3.

In general, the errors decrease with increasing N and the rate of decay is consistent with the order of accuracy of the inter-
polation scheme. The only exception is the mean error, where N�2 behavior is observed for the piecewise-constant interpo-
lation. However, recall that the mean error has no influence on the number-density fluctuation. Except for small N, the errors
for cases 2-1 and 2-3 cases are nearly identical. Unlike for test problem 1, here we can compute the number-density error.
Fig. 11 shows that the errors for Case 2-1 (the expansion wave, u2 ¼ 1) are consistently larger than those for Case 2-3 (the
shock wave u2 ¼ �0:4).

It can be observed that the error of Hermite interpolation is smaller than that of the natural cubic spline interpolation
when N is small. Note that the natural cubic spline interpolation behaves even worse than the piecewise-linear interpolation.
When N is close to 1, the discretized hyperbolic-tangent profile appears as a discontinuity. As is well-known, higher-order
interpolation schemes generate spurious oscillations in the interpolant near discontinuities. These spurious oscillations also
vary in time and contribute to the redistribution of particles. Compared to the natural cubic spline, Hermite interpolation
takes advantage of the exact first derivatives in constructing the interpolant, and hence performs much better for small
N. Furthermore, Hermite interpolation better localizes the influence of the discontinuity, whereas the cubic spline tends
to spread the interpolation error to a larger domain.
Table 1
Summary of cases for test problem 2.

Case sp u2

2-1 0 1.0
2-2 0 �0.5
2-3 0 �0.4
2-4 0 0.1
2-5 0 10.0
2-6 1 1.0
2-7 10 1.0





Fig. 8. Profiles of particle relative-position error and spacing error (Epos and Espac) inside the particle packet with initial size unity for cases 2-1 and 2-2 with
N ¼ 4.
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implementation, the analytical first derivative is used by taking advantage of the known fluid-velocity profile. In a real com-
putation, the first derivative is not known and must be calculated from the function values. Furthermore, the problem ob-
served with the cubic-spline interpolation can also affect the Hermite interpolation. [6] developed a method of computing
the first derivative that can guarantee monotonic interpolants. With this method, numerical oscillations in the interpolant
upstream and downstream of the wave can be eliminated, guaranteeing that Hermite interpolation works well even for poor
resolution.

5.2.4. Effect of particle inertia
We now consider inertial particles. The equation of motion for the particles only includes the Stokes-drag term and thus

the dimensionless particle response time sp is the only parameter representing the particle-inertia effect. We choose cases 2-
6 and 2-7 ðsp ¼ f1;10gÞ, and compare them with case 2-5 ðsp ¼ 0Þ.

The results for the position, spacing, and number-density errors integrated across the packet are shown in Fig. 13 as a
function of N and sp. For large N, the errors seem to be the lowest for the tracer particles and increase with increasing particle
inertia. For very large N, the influence of sp is smaller than that of the interpolation scheme.



The error behavior reverses for small N and as a result the deviation of the inertial particles from the tracer particles is not
monotonic. It can be observed clearly that the error for the inertial particles crosses that for tracer particles at a certain value
of N ¼ bN . When N < bN , the errors for inertial particles are smaller than for tracer particles. Conversely, when N > bN , the
opposite trend is observed. It is also interesting to note that bN decreases as the order of interpolation scheme goes down.
In fact, for piecewise-constant interpolation the error for inertial particles is always larger than for tracer particles (i.e., bN
does not exist). It seems for the higher-order interpolation schemes the inertial effect of particles helps reduce the particle
number-density fluctuation when the grid resolution is poor.
5.3. Test problem 3: Expansion wave

We now extend the analysis from the model problems with imposed fluid-velocity profiles to problems in which the fluid
velocity is obtained from numerical solutions of the Euler equations. First, we consider the propagation of a one-dimensional
expansion fan into a particle-gas mixture. In contrast to the ‘‘frozen” expansion wave considered in Section 5.2, here the
expansion-wave width increases with time. One particular focus of the following is to establish the degree to which the re-
sults obtained for the model problem apply to the real problem considered here.

The interaction of particles with expansion waves is of fund