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These errors can be reduced by increasing the number of particles in the simulation. Here,
we present results to demonstrate that a third error exists that can also generate small-
scale number-density fluctuations. In contrast to the two known errors, this error cannot
be lowered by increasing the number of particles. Analysis shows that this error is caused
by spatial variation at the subgrid scale in the interpolation error of the fluid velocity to the
particle location. If the particle velocity divergence is zero, the particle concentration error
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Number-density remains at the subgrid scale. However, if particles preferentially accumulate either due to
Fluctuations their inertia or due to divergence of the underlying fluid-velocity field, this error manifests
Interpolation as number-density fluctuations on the grid scale. The only mechanism of reducing these

errors is through higher-order accurate interpolation. By studying two model problems,
estimates for the errors are derived. These estimates are shown to be quite accurate for
simulations of shock and expansion waves interacting with particles.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In Eulerian-Lagrangian simulations of multiphase flows, the carrier (fluid) phase is evolved in the Eulerian framework
and the dispersed (fluid or solid) phase is treated by the Lagrangian framework. In the Eulerian approach, conservation equa-
tions are solved for the mass, momentum, and energy per unit volume on a fixed grid. In the Lagrangian approach, equations
are solved for the position, mass, momentum, and energy of material points that move through the fixed Eulerian grid. (For
brevity, we will consider the dispersed phase to be solid and hence refer to the material points as particles. The issues dis-
cussed in this article apply equally to bubbles and droplets, however.)

In the Lagrangian equations, quantities such as the undisturbed fluid velocity, fluid acceleration, and fluid temperature
are needed at the particle location. Because the particles do not, in general, coincide with the locations at which the fluid
solution is stored, some form of interpolation is required. (In this article, we assume that the fluid solution is obtained at
grid points through a finite-difference method. Therefore, the fluid properties must be interpolated from grid points to
the particle locations.) The interpolation is sometimes referred to as “forward” or Eulerian-to-Lagrangian coupling. At suffi-
ciently high mass loadings, the particles begin to influence the fluid. This back effect represents Lagrangian-to-Eulerian or
“backward” coupling.
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To discuss the coupling in more detail, consider the momentum exchange between the phases. According to Newton'’s
third law, the hydrodynamic force exerted on the individual particles is applied back to the carrier phase. In backward cou-
pling, the forces from particles must be transferred to the grid points and applied as source/sink terms in the momentum
equations of the carrier phase. A smooth distribution of the particle number-density, i.e., the number of particles per unit
volume, on the grid is essential for an accurate accounting of the back effect of the dispersed phase on the carrier phase.
Large grid-scale fluctuation in the particle number-density will introduce spurious small-scale oscillations in the carrier
phase through backward coupling. These oscillations, in turn, will then be fed back to the particle motion and distribution
through forward coupling. This feedback mechanism can lead to accumulation of errors.

Here, we focus on a class of physical problems where the particles are small and numerous. This will result in a large
number of particles within each grid cell (in one dimension: the region between two adjacent grid points), allowing a con-
ceptually smooth representation of the particle number-density and the backward coupling. Because the cost of Eulerian-
Lagrangian simulations is proportional to the number of particles, it is common to limit the average number of particles
per cell and define so-called “computational particles” that represent a large number (or cloud) of real particles. In such sim-
ulations, several sources of numerical errors can be identified:

(1) The Eulerian Discretization Error (EDE) that arises from the spatial and temporal discretization of the equations gov-
erning the carrier phase.

(2) The Interpolation Error (IE) that arises from the interpolation of the carrier-phase solution from the Eulerian grid to
the particle locations.

(3) The Lagrangian Integration Error (LIE) that arises from the temporal discretization of the Lagrangian equations for the
particles.

(4) The Back-Coupling Error (BCE) that arises partly from the discrete algorithm that apportions the momentum and
energy coupling of the individual particles back to the neighboring grid points (or cells) and partly from the fact that
only a limited number of computational particles are used to represent the true system where spatial distribution is
random.

These errors are controlled by the spatial discretization, the temporal discretization, and the Lagrangian discretization
(number of computational particles per cell). The errors from the spatial and temporal discretizations are easily controlled,
at least in principle, by choosing appropriate methods and reducing the grid spacing Ax and time step At. For this reason, we
ignore the EDE and LIE in the following. (All numerical results presented below have been verified to have negligible EDE and
LIE.) The other two errors (IE and BCE) arise from the numerical approximation of the forward and backward coupling. Sev-
eral interpolation schemes (second-, fourth-, and sixth-order Lagrange interpolation; spline interpolation; Hermite interpo-
lation; etc.) have been used in the past. The IE arising from various interpolation schemes has been considered by [1] and
[20] for turbulent flows. Although higher-order schemes have been shown to result in significantly reduced IE, lower-order
methods such as trilinear interpolation are often used, especially in the context of finite-volume and finite-difference ap-
proaches (see, e.g., [16,15,21]). Similarly, several techniques have been advanced to back-couple the Lagrangian particles
to the carrier phase, such as the particle-in-cell approach (e.g., [5,4,8]) and the projection method (e.g., [17,19,2]). The accu-
racy of backward-coupling algorithms has recently been examined by [7].

Eulerian-Lagrangian simulations of multiphase flows often exhibit small-scale fluctuations in the number-density. Here,
the term “small scales” means scales on the order of the grid spacing. Traditionally, such fluctuations have been ascribed to
two errors. If particles are randomly distributed with uniform probability over a given domain, the inherent stochastic fluc-
tuation arising from the random distribution will contribute to grid-cell to grid-cell variation in the particle number-density.
This stochastic error scales as the inverse square root of the mean number of particles per grid cell. A further error is due to
the finite number of computational particles, which is typically far smaller than the actual number of particles. This deter-
ministic error decreases as the inverse of the mean number of particles per grid cell (see [13,22,7]). Thus, while the nature of
these two errors is fundamentally different, both can be controlled by increasing the number of computational particles.

However, there are cases (see [10]) where small-scale number-density fluctuations cannot be reduced by increasing the
number of computational particles or by maintaining the number of computational particles in each cell constant (see
[13,18,9,12]). Furthermore, these small-scale fluctuations cannot be explained on the basis of stochastic errors arising from
a random particle distribution. It is this additional of error in particle number-density that is the focus of this article.

A simple explanation for the added source of number-density fluctuation that cannot be reduced by increasing the num-
ber of particles is as follows. Consider the carrier-phase velocity to consist of a simple propagating disturbance of fixed shape
and size. Let the exact fluid velocity be known at the grid points at all time instances (i.e., EDE is taken to be zero at the dis-
crete grid points). Even then, if a lower order interpolation scheme is used to obtain fluid velocity between grid points for
computing particle motion, the resulting interpolated fluid disturbance will change shape as it propagates through the grid.
This interpolation error in particle motion contributes to spurious variations of the particle position at the subgrid scale.
These variations may accumulate over time and become significant. Thus, particle number-density error can arise from inter-
polation error (IE) even in the absence of any error in the fluid solution (EDE). However, in any typical numerical implemen-
tation, the fluid velocity will include Eulerian discretization error and if the spatial discretization of the flow solver and the
interpolation scheme are of the same order then EDE and IE will be comparable. Both EDE and IE will lead to errors in particle
number-density.
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As will be shown below the nature of interpolation error’s impact on particle motion will be such that IE will result in
spurious small-scale fluctuation in particle number-density. This error will be subgrid in origin and appear as fluctuating
clustering of particles within the grid cells. There are situations where particles tend to preferentially accumulate and create
regions of enhanced concentration and regions devoid of particles, either due to their inertial effect or due to non-zero diver-
gence of the underlying fluid velocity. Such effective divergence in particle motion spreads the subgrid error due to IE and
give rise to grid-cell to grid-cell particle number-density fluctuation.

The goals of this article are (1) to determine the precise source of the error, (2) to demonstrate how the error can be re-
duced, and (3) to characterize the error magnitudes so that guidelines can be established that allow practitioners to keep the
error below specified thresholds. The overall approach adopted to reach these goals is to systematically eliminate other
sources of error, consider four simple test problems in one dimension. The first two are model problems where the propa-
gating fluid disturbance consists of (1) a single sinusoidal wave and (2) a hyperbolic-tangent disturbance. These two models
problems provide the ideal test bed to illustrate the interpolation-induced error in particle number-density. While the for-
mer has no net fluid-velocity divergence across the disturbance, the later does. This allows examination of how subgrid error
translates to grid-cell to grid-cell error. The later two test cases consider one-dimensional compressible flows of practical
interest, namely (3) an expansion fan and (4) a shock wave. The results obtained from the model problems will be used
to interpret the results for these later test cases.

The remainder of this article is structured as follows. The general mathematical model of multiphase flow in Eulerian-
Lagrangian framework is described in Section 2. A simplified model is introduced in Section 3. The numerical approach is
outlined in Section 4. Results are presented in Section 5. Conclusions are offered in Section 6.

2. Mathematical formulation

The equations governing the carrier phase are conveniently expressed in the Eulerian frame of reference. We consider
only one-dimensional problems in this article because the fundamental nature of the error investigated here is not depen-
dent on the number of spatial dimensions. The mass, momentum, and energy equations of the carrier phase can then be writ-
ten as

ap%)  d(pFuE)

ot* * ox* =0, (M
o5 uE)  Olps (E)’] _ opF o,

ot* + ox* T oxr U (2)
O(PSES) O(pFHEUE)
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where p,u, p,E, and H represent the density, velocity, pressure, total energy, and total enthalpy. The superscripts g and p de-
note properties associated with the gas phase and particle phase, respectively. The superscript * indicates dimensional quan-
tities. The total enthalpy of the gas H®" is given by H®* = E®* + p&*/p¢*. The ideal-gas law is assumed to apply, i.e.,
* * * 1 *
P =(y-1)p* {Eg fj(gf} 4)

where 7 is the ratio of specific heats of the gas. We use ) = 1.4 throughout.
The Lagrangian evolution equations for the particle position x*, velocity u?*, and temperature T?* are

ax™ .

ar =" (5)
duP* s (xP ) — uPr

a - ©
dr’ T ) - T
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where ug*(xP*,t*) and T%(xP*,t*) are the gas velocity and temperature at the particle location, respectively, and the particle
mechanical and thermal time scales P and 15" are given by

(@) ()’ 8
HE T T (8)
where pP* is the particle density, d”* is the particle diameter, and C* is the particle specific heat, all of which are assumed to
be constants. Because finite Reynolds number effects are not important for the purpose of this study, no such corrections are
incorporated. The variation of the dynamic viscosity p&* with temperature is given by Sutherland’s law. The conductivity x&*
and viscosity of the gas are related by the Prandtl number Pr = 1#*C%" /18", where C3" is the specific heat at constant pressure
of the gas. In the limit t7* — 0, the particle behaves as a tracer and follows the local gas, i.e., uP* — ug*(xP*,t*). When t7* # 0,
particle inertia becomes important and the particle velocity differs from that of local gas phase velocity.
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When the particle mass loading is not negligible, the particles influence the momentum and energy of the gas through f?*
and g” in Egs. (2) and (3) (backward coupling). For the ith particle, we have
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P 6 ™ e : o ’
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where V. is equal to the grid spacing for the one-dimensional computations considered here. The terms fP* and g”* in Egs.
(2) and (3) are calculated by summing f7* and g?* of all the particles in the vicinity of the grid point.

3. A simple model scenario

Though results based on the mathematical model described in Section 2 will be shown in Section 5, we consider an even
simpler model first to isolate the precise cause for the small-scale number-density fluctuations. In this simpler model, we
assume that the fluid velocity is a known function and that heat-transfer effects are negligible. Then only the solution of
the particle position and momentum equations is required.

For reasons that will become clear below, a gas phase velocity disturbance that is spatially compact is particularly useful
in the present study. Then the gas phase velocity can be written in dimensional form as

0 if x +uit" <-N"/2
us*(x*, ) =< y(x +uitt) if —N'/2<x +uit* <N/2 (10)
u; if x* +uitt > N"/2,

where N* is the region of support. The shape of the disturbance is dictated by the choice of the function  and is independent
of time. As defined above, the disturbance travels leftward at a constant velocity of u; > 0. The function y is defined to guar-
antee at least C°-continuity at x* + u’t* = +N*/2. We assume that the particles are initially stationary, uniformly distributed
within a given sub-domain, and to the left of the disturbance. The model problem is shown schematically in Fig. 1. Our pri-
mary interest is to determine how the particles are redistributed as the disturbance propagates through the particles.

It is instructive to first consider the theoretical behavior of the particles in reaction to the disturbance. The particles re-
main stationary until the arrival of the disturbance. We place a restriction on the gas phase velocity that y + u; > 0 for all x*.
This ensures that there are no fixed points in Egs. (5) and (6) where particles can accumulate. Thus, as the disturbance moves
to the left, the particles are guaranteed to emerge from the disturbance on the right. For a tracer particle, i.e., for t? = 0, the
velocity instantaneously becomes equal to u; as soon as the disturbance moves past it. For an inertial particle, i.e., for =¥ > 0,
the approach to the velocity is asymptotic. In the region of the disturbance where the particle velocity is varying, the spacing
between particles can be non-uniform. But to the far right of the disturbance, where the particle velocity has reached the
asymptotic value of u3, the particles are again uniformly distributed. From conservation of particles, it can be shown readily
that the ratio of the uniform spacing between two adjacent particles after the passage of the disturbance to that before the
disturbance is 1 + u3 /uj.

In what follows, it will be shown that the above theoretical results are not recovered when the problem is solved numer-
ically. Although all the particles numerically reach the correct asymptotic velocity of u3, they will not be uniformly distrib-
uted. It is this non-uniform distribution of particles that can give rise to the grid scale fluctuations described in the
introduction. The root cause of the error lies in the precise way in which the fluid velocity is interpolated to the particle loca-
tion. In the numerical solution, the fluid velocity that is collocated at the grid points is interpolated to obtain a numerical
approximation to y. As the disturbance moves through the fixed Eulerian grid, the interpolated fluid velocity varies over time
(i.e., the numerical approximation to y varies). This variation is time-periodic, since the fluid velocity at the grid points and
its interpolation are identical after the disturbance has moved over an entire grid cell.

u,
Particles
-0 . ) :
e
Particles
100 \ )
e

Fig. 1. Schematic of model problem in which a wave moves through a packet of particles. In model problem 1 (see Section 5.1), a sinusoidal wave is
considered. In model problem 2 (see Section 5.2), a hyperbolic-tangent wave is used.
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In essence, although the exact disturbance is collocated at the grid points as it propagates to the left, its numerical
approximation obtained from interpolation changes as the disturbance moves within a grid cell, and this variation cyclically
repeats over adjacent grid cells. Consequently, particles that are initially located at different positions within a grid cell “see”
slightly different histories of the carrier-phase velocity as the disturbance propagates through the grid cell. This results in a
non-uniform particle distribution as they emerge out of the disturbance. Again, the non-uniformity is within a packet of par-
ticles that was between grid points to the left of the disturbance before its arrival. By contrast, in the exact solution, there is
no grid dependence and each particle sees the same history of gas phase velocity and thus a uniform spacing is preserved
even after particles emerge from the disturbance.

A key parameter that controls the level of non-uniformity in the numerical solution is the grid size Ax*, or more precisely
the number of grid points used to resolve the disturbance (N = N*/Ax*). Here we use the grid size Ax* and the velocity of
propagation of the disturbance u; as the length and velocity scales. Then the gas phase velocity and the equations of motion
for the particle can be written in dimensionless form as

ué = ub(x,t), (11)
P

%:up7 (12)

duP us(xPt) — uP

- v 0

where the variables without superscripts = are dimensionless.

4. Approach
4.1. Numerical methods for governing equations

For the model problem, the gas solution is assumed to be known and is not influenced by the particles, i.e., we only con-
sider one-way coupling. For the real multiphase-flow problems, both the gas and the particle phases need to be solved. In
this work, Egs. (1)-(3) are solved by a fifth-order accurate hybrid compact-WENO scheme with RK4 time integration de-
scribed by [3]. Egs. (5)-(7) are integrated in time with RK4 also. The grid spacing and time step are chosen small enough
to ensure that the associated errors are negligible. The implementation of two-way coupling is described by [10,11].

4.2. Interpolation methods

In the numerical integration of Eqgs. (6) and (7) or Eq. (13), fluid quantities at the particle position, e.g., us*(x*,t*) or
us(xP,t), are needed. They must be obtained through interpolation from grid-point values of the fluid velocity. In the present
study, we employ four interpolation methods:

(1) Piecewise-constant interpolation: The interpolated fluid velocity is approximated as a constant between grid points and
is therefore discontinuous at the grid points. The fluid velocity at the particle location is obtained by averaging the
values at the two grid points straddling the cell in which the particle is located. This interpolation scheme is not of
practical interest due to its low order of accuracy.

(2) Piecewise-linear interpolation: This interpolation method can be viewed as first-order spline interpolation. The fluid-
velocity distribution inside a cell is approximated as linear. The interpolated fluid velocity is only C°-continuous across
the grid points. In two and three dimensions, this scheme leads to the widely used bilinear and trilinear interpolation
schemes.

(3) Natural cubic-spline interpolation: In cubic-spline interpolation, the fluid velocity is constructed such that the interpo-

lated fluid velocity is smooth and continuous in the first and second derivatives at the grid points. Natural cubic

splines, which assume that the second derivatives of the interpolant at the domain boundaries are zero, are the most
commonly used cubic spline.

Hermite interpolation: In this method, the fluid velocity inside a cell is interpolated by Hermite polynomials. Therefore,

not only the function values but also the first derivative are needed at the grid points. The interpolated fluid velocity is

C'-continuous. In the model problems, the first derivative at the grid points is available analytically. In a real compu-

tation, the first derivative of the fluid velocity at the grid points must be computed numerically. In multiple dimen-

sions, the complete implementation of Hermite interpolation can be tedious, and instead, a simpler shape-function

method can be used see [1].

(4

~

4.3. Error definitions

To evaluate the influence of the interpolation error and the resulting non-uniformity in the particle distribution, we only
need to study a single packet of particles, defined as a group of particles located within a grid cell prior to the arrival of the
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disturbance. As discussed above, and to be illustrated in more detail below, the behavior of each packet of particles is
identical.

We define the right and left bounds of the packet as x4 (t) and x? (t), respectively. The distribution of particles in the packet
at any given time is a function of the initial distribution. Thus the distribution of particles within the packet can be defined in
terms of their relative-position as follows:

_X(t) =X (1)

Mo t) = 55 (14)
° X (£) — X7 (8)
such that 0 < 17 < 1 at all times. Similarly, the initial distribution of particles within the packet is given by
xP(0) — xP (0
R AC) 5)

Xx(0) —x7(0)

Therefore, = 1n(n,, t) gives the particle distribution inside the packet and serves as a mapping from the initial to the current
particle distribution.

The derivative drj/dn, measures the particle spacing, i.e., the distance between two neighboring particles within the pack-
et. The inverse of the particle spacing, i.e., dn,/dn, provides a measure of the local particle number-density. The particle num-
ber-density within a grid cell of unit width centered around # can then be obtained as

1 ~1140/2 d170
- 0 Jn—-0/2 d”l

where 0 = 1/(xk(t) — x[(t)) is the unit grid spacing normalized by the current packet size x(t) — x?(t).

We define several errors to measure the small-scale fluctuations arising from the interpolation. In all definitions, we com-
pare the numerical results (subscript “num”) with the corresponding exact solution (subscript “ex”). For the exact solution,
the asymptotic particle distribution remains uniform as discussed above, and we have the results #,,(#,,t) =1, and
(dn/dng)., = 1 as t — co. However, the width of the packet of particles changes and the ratio of final to initial number-den-
sity is given by 1/(1 + u5). The error definitions are:

nP(n) d¢ (16)

¢

e Mean error: Measures the error in the mean location of the packet,

E — 1 Xiex + le;.ex _ XIL).nllm + Xlg.num (1 7)
mean L 2 2 .
e Spread error: Measures the error in the width of the packet,
(xlg.ex - XILJ.ex - (Xlg.num - Xf,num
spr = > - ) . (18)

P P
(XR,ex - XL,ex)

e Relative-position error: Evaluates the error of the relative particle position within the packet compared to the exact
solution,

Epos(1) = |1 — 1g]- (19)

e Spacing error: Evaluates the error in adjacent particle spacing,

d
Epc) =g~ 1 (20

o Number-density error: Evaluates the error in particle number density within each grid cell arising from the numerical
solution,

Ena(17) = InP (1) — 11, (21)

Note that the relative-position, spacing, and number-density errors are defined as a function of the current relative par-
ticle position. To measure the error for the entire packet of particles, the L,- and L..-norms are used,

1
L(E) = /O (E(n))*dn, (22)
Lo (E) = max E(n), (23)

where E stands for Ej, Espac, OF Eng. In the above definitions, the particle distribution in a packet is assumed to be continuous.
Therefore, the error definitions are independent of the number of particles within the packet, and hence the Lagrangian dis-
cretization does not play a role. When calculating the above error norms numerically, finite numbers of particles are used.
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The numbers of computational particles used in all the calculations reported below have been chosen large enough to resolve
the continuous error profile inside the packet. As a result, any errors due to finite numbers of particles are negligibly small
compared to the interpolation error.

5. Results

In this section, results for four test problems are presented. The first two problems are model problems of the kind de-
scribed in Section 3 with sinusoidal and hyperbolic-tangent profiles, respectively. The primary difference between the
two profiles is that the latter has non-zero net fluid-velocity divergence and, therefore, represents a simple model for com-
pression and expansion waves. The second two problems are based on the full Euler equations for the gas phase listed in
Section 2 and consider proper expansion and shock waves.

5.1. Test problem 1: Sinusoidal profile

The fluid velocity is taken to be a single sinusoidal wave that moves to the left at unit speed u; into a particle packet, as
shown schematically in Fig. 1. The non-dimensional fluid velocity is

. 27(x+1) i+ < < _
ug(x7t):{Asnn[N ] if —t-N/2<x<—t+N/2, 24

0 else,

where N denotes the number of grid points across the unit wavelength of the sinusoidal wave and A = A" /u; is the dimen-
sionless amplitude. Note that A must be smaller than unity to avoid particle settling at fixed points. N provides a measure of
how well the carrier-phase velocity is resolved by the computational grid. The fluid velocity defined by Eq. (24) is only C°-
continuous because of slope discontinuities at the head and tail of the wave. To reduce interpolation errors near these dis-
continuities, it is assumed that the head and tail positions are known to subgrid resolution. Therefore, the fluid velocity is
only interpolated over the domain —t — N/2 < x < —t + N/2 and taken to be zero elsewhere. An important characteristic
of this model problem is that the particle velocity returns to zero after the passage of the disturbance, i.e., u, = u;/u; = 0.
Therefore, the net divergence of fluid velocity is zero, and the non-dimensional packet width returns to its starting value
of unity. The results presented below can be interpreted as a von-Neumann-type error analysis of particle redistribution
within the packet and used to evaluate the accuracy of interpolation schemes.

In this model problem, the key parameters are N, 77, and A. We only consider tracer particles, i.e., 7?7 = 0. We first dem-
onstrate the effect of interpolation error with a case of very poor spatial resolution, namely N = 4 and A = 0.5.

5.1.1. Particle redistribution

The fundamental source of non-uniform particle redistribution within a packet is due to the manner in which the inter-
polation scheme approximates the sinusoidal fluid-velocity disturbance as the latter propagates through the fixed Eulerian
grid. Fig. 2 shows the exact velocity profile and its approximation by the four interpolation schemes. In non-dimensional
terms, the wave propagates to the left by one grid spacing in unit time. For ease of interpretation, each figure is centered
about the wave and the grid locations are marked by black filled circles. Several observations can be made. First, as expected,
the interpolation error decreases as the order of interpolation increases, with the largest error observed for piecewise con-
stant interpolation. The error is particularly large in Fig. 2 since only four points are used to resolve the wave. More signif-
icant than the error itself is how the error changes in time. As the sinusoidal disturbance moves through the grid, the
collocated values at the grid points vary in time. The numerical representation of the disturbance obtained from the inter-
polation changes correspondingly. This change can be observed readily in the different shapes of the lower-order interpo-
lants. Although not as readily observable, the approximations changes with time even for the higher-order spline and
Hermite interpolations. This variation in the approximation to the fluid velocity repeats after the wave has moved by one
grid spacing.

The adverse impact of the periodic variation in the interpolated fluid velocity on particle motion and redistribution can
now be addressed. When the leading edge of the wave reaches a given particle, it starts to move due to the non-zero relative
velocity. When a given particle exits the wave, it decelerates back to zero velocity. The tracer particles considered here stop
moving once they reach the tail of the sinusoidal wave. Thus, each particle “sees” a history of fluid velocity that dictates its
motion and final resting position. Due to variation in the interpolated sinusoidal wave, as illustrated in Fig. 2, the history of
fluid velocity “seen” by a given particle will depend on its initial position relative to the grid. As a result, an initially uniform
distribution of particles between two grid points will not remain uniformly distributed.

In interpreting the results, it is important to distinguish between two components of the interpolation error. The first is
the mean interpolation error that affects all particles irrespective of their initial location within the packet. The effect of this
error is that the final numerically predicted position of a particle within the packet is different from its exact position. Be-
cause this error is the same for all particles within a packet, it does not affect the uniformity of particle distribution. The sec-
ond error, which is that of primary concern here, is that component of the interpolation error that changes as the wave
passes through the fixed grid. Since the mean error has been taken into consideration, this error can be thought of as the
fluctuating interpolation error. The fluctuating interpolation error is the sole cause of the non-uniform particle distribution.
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Fig. 2. Exact and interpolated fluid-velocity profiles as a function of time for N = 4 and A = 0.5. The filled circles denote locations with collocated values.

Fig. 3(a) shows the final particle position and its error compared to the exact solution as a function of the initial particle
position. From this figure, both the mean and the relative-position error of the particles can be discerned. According to the
exact solution, every particle shifts to the left by 0.6188 because of the passage of the sinusoidal wave. By comparison, the
average left-shifts of the particles in the numerical solutions are 0.1910 (69.14%), 0.3690 (40.36%), 0.5983 (3.31%) and 0.6070
(1.90%), respectively, for the piecewise constant, piecewise linear, spline, and Hermite interpolations (the mean-position per-
centage errors are given in parentheses). The variation in the position error as a function of the initial particle location pre-
sented in Fig. 3(b) is responsible for the non-uniform distribution of particles. Note that the error repeats for every packet of
particles initially located between grid points. Therefore, we will focus on the behavior of a single packet for the rest of the
article. The results presented below can be extended to distributions stretching over multiple grid spacings by applying
periodicity.

Fig. 4(a) gives the relative-position # of a particle inside the packet as a function of its initial relative-position #, and the
various interpolation methods. The exact solution is simply 17 = #,. The error in the relative particle position translates into
an error in spacing between adjacent particles di/dn, and hence into an error in local particle number-density dr,/dn. The
local particle number-density is presented in Fig. 4(b) for the various interpolation schemes. As can be expected, the errors
associated with piecewise-constant interpolation are large. For instance, in Fig. 4(a), it can be seen that the relative-position
remains nearly constant at # ~ 0.92 for 0.5 < 1, < 0.95. In other words, particles that were originally distributed over nearly
half the packet are concentrated in a narrow region around # ~ 0.92 after the passage of the wave. The corresponding sharp
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